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Recently a new class of biocompatible elastic polymers loaded with small ferrous particles (magnetoelastomer) was developed at 
Lawrence Livermore National Laboratory. This new material was formed as a thin film using spin casting. The deformation of this 
material using a magnetic field has many possible applications to microfluidics. Two methods will be used to calculate the deformation 
of a circular magneto-elastomeric film subjected to a magnetic field. The first method is an arbitrary Lagrangian-Eulerian (ALE) 
finite element method (FEM) and the second is based on nonlinear continuum electromagnetism and continuum elasticity in the 
membrane limit. The comparison of these two methods is used to test/validate the finite element method. 

Index Terms— Magnetoelasticity, Finite element methods, Magnetic Membrane, Microfluidics

I. INTRODUCTION

ecently a new class of biocompatible elastic polymers 
loaded with small ferrous particles (magnetoelastomer) 

has been developed at Lawrence Livermore National 
Laboratory. The magnetoelastic material consists of a mixture 
of polydimethylsiloxane (PDMS), iron powder and 
surfactants. The surfactant was used to increase dispersion of 
the iron particles. Thorough mixing was used to optimize the 
dispersion of the iron into the PDMS matrix and to break up 
large iron agglomerates. The material is formed into a thin 
film using spin casting, see Fig. 1 for a photo and a close up.

Fig. 1.  Photo of magnetoelastic film and magnification 

An applied magnetic field will deform the film. The 
deformation of this film from the applied magnetic field has 
many possible applications, particularly in microfluidic pumps 
and pressure regulators. Two methods will be used to calculate
the equilibrium deformation of a circular magnetoelastomeric 
film subjected to a magnetic field. The first method is a 
computational approach employing the arbitrary Lagrangian-
Eulerian (ALE) finite element method (FEM) for the full 3D 
finite thickness equations; this approach will be discussed in 

Section II. The second method is an analytical approach 
employing a membrane approximation; it is discussed in 
Section III. Results for both methods are presented in Section 
IV and a comparison of the two methods and a conclusion are
presented in Section V.

II. FINITE ELEMENT MODEL

The finite element method is based on a coupling of the full 
three-dimensional equations of dynamic elasticity coupled 
wi t h  l o w-frequency (eddy current approximation) 
electromagnetics. The elastic equations are solved using the 
standard Galerkin method with linear nodal basis functions 
and implicit Hilber-Hughes-Taylor integration [1]. This 
integration method applies a controlled amount of damping to 
high-frequency oscillations which aids convergence to steady-
state deformation. The magnetic equations are solved using an 
H(curl)-conforming Galerkin method with implicit time 
integration [2]. The elastic equations and the magnetic 
equations are coupled using an operator-splitting approach.
The software is based on an existing magnetohydrodynamics 
code [3], with the addition of the hyperelastic Mooney-Rivlin 
model for the stress-strain relationship. The computational 
mesh includes the film and a region of vacuum surrounding 
the film. In the film the mesh moves with the material (pure 
Lagrangian) but in the vacuum around the film the mesh is 
allowed to relax (ALE).  This ALE relaxation prevents the 
mesh from becoming highly distorted for large film 
displacements.

A steel ring with a prescribed current is located above the 
film to create a magnetic field similar to a magnetic dipole.
The distance between the mid-plane of the film and the mid-
plane of the ring is h, see Fig. 2 for a schematic of the problem
(definitions of undefined variables to follow in sections II and 
III). To minimize the size of the problem the axisymmetry of 
the system is used to mesh only a quarter of a revolution
around the axis of symmetry and impose a symmetry 
boundary condition on the x = 0 and y = 0 planes. We also 
take advantage of the fact that the magnetic field produced 
above and below the center of the current carrying ring is 
symmetric, the z = 2h plane. Thus we only mesh the region 
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below the center of the current carrying ring. See Fig. 3 and 4 
for the FEM layout and material regions.

Fig. 2.  Geometry of the membrane and the dipole source

Fig. 3.  Top view of FEM material regions (air is white, steel is black, film is 
gray) 

Fig. 4.  Side view of FEM material regions (air is white, steel is black, film is 
gray) 

The magnetic boundary conditions are as follows: on the 
ends of the current carrying ring at y = 0 the normal 
component of the current density is set to J and on the other 
end of the wire at x = 0 the normal component of the current 
density is set  to -J; on all other free surfaces the normal 
component of the current density is set to zero; on the top of 
the mesh (symmetry plane at z = 2h) the tangential component 
of the magnetic field is set to zero; on all other faces the

tangential electric field is set to zero, thus insuring that the 
normal component of the magnetic field is zero

On all free surfaces that are not symmetry planes the 
displacement is constrained. The displacement on the edge of 
the film that is not on a symmetry plane is also constrained. 
The entire edge of the film is not constrained since this would 
impose zero slope as well as the desired zero displacement. To 
get a better comparison to the continuum model, only the 
nodes on the mid-plane are constrained. This constraint allows 
for rotation at the edge of the film while maintaining zero 
displacement of the mid-plane at the edge. 

The elastic response of the film is modeled using the
Mooney-Rivlin strain-energy function (w), in terms of the 
principal stretches [4]:
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where G is the shear modulus; δ is a fixed material parameter 
and λ1, λ2 and λ3 are the principal stretches.

Since the current carrying loop does not produce an exact 
magnetic dipole field, an equivalent dipole strength (Deq) for 
comparison of the two methods needs to be calculated. The 
ALE finite element code is initially run in static mode (no 
motion) to determine the steady state magnetic field.  An 
equivalent dipole strength is calculated for each element 
between 0 ≤ r ≤ r0 and (h+ε/2) ≤ z≤ 7h/5, where r0 is the radius 
of the film and  is the thickness. The equivalent dipole 
strength is calculated based on the z-component of the 
magnetic field (hzALE), since it is larger than the radial 
component. The average of these values is used to calculate 
the equivalent dipole strength. The dipole magnetic field used 
in the continuum model is:

3
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where hr and hz are the radial and axial components of the 
magnetic field, D is the dipole strength, a is the unit vector 
from the dipole to a material point, k is the unit vector in the 
axial direction,  is the distance from the dipole to a deformed 
material point (  2 = u2 +(h-z) 2) and u(r) and z(r) are the radial 
and axial coordinates of a material point in the deformed 
configuration. The equivalent dipole strength is determined by 
taking the dot product of equation 2 with k and setting hz equal 
to the axial component of the magnetic field produced in the 
finite element code(hzALE) resulting in:
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and when solved for the equivalent dipole strength:
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where zc is the height of the center of the element above the 
mid-pane of the film; and rc is the radial position of the center 
of the element away from the axis of symmetry. It should be 
noted that the relationship between the equivalent dipole 
strength and the current density is linear. Thus once the 
equivalent dipole strength is calculated for one current density 
the equivalent dipole strength for any other current density can 
easily be calculated. 
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Once the equivalent magnetic field is determined the finite 
element code is used in the dynamic mode. In order to avoid 
an undesirable shock to the film, the magnitude of the current 
is slowly ramped up to the final value. The deformation as a 
function of the current magnitude is then recorded for 
comparison to the analytic model.

III. CONTINUUM MODEL

The analyt ical  method is  based on the membrane 
approximation, which will only be outlined here; see reference 
[4] for a complete derivation. The membrane approximation 
takes advantage of a small aspect ratio between the thickness 
and radius of the film, and an asymptotic expansion of the 
three-dimensional equations of static equilibrium about an
aspect ratio of zero is taken. The leading order terms of this 
expansion form the membrane model. This approximation 
results in a model where rigidity with respect to bending is 
neglected. Refer to [4] for the derivation of the coupled first 
ordered system of differential equations presented here 
without proof:
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where r [0, r0] is the radius from the axis of symmetry of a 
material point in the reference configuration; λ(r) and μ(r) are 
the azimuthal and radial principal stretches;  (r)  is an angle 
defined in Fig. 2; ŵ = εw; w is the conventional strain energy 
function dependent on the principal stretches; H = 3D2μ0χε; μ0
( >0) is the free-space permeability; and χ is the magnetic 
susceptibility of the film. Refer to Fig 2 for a geometric 
representation. Note that the notation ()'=d()/dr and Greek or 
Latin subscripts are used to denote partial derivatives.

For our problem, making use of incompressibility and the 
relation between w and ŵ we arrive at the strain energy 
function:
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The above system (equation 5) is solved for the equilibrium of 
the deformed film using a shooting method--note that the 
dynamic stability of this solution is unknown.

IV. RESULTS

All results reported here are for a magnetoelastic film with 
the following properties and dimensions: radius of the film (r0)

of 0.317cm; dipole height (h) of 0.5cm; film shear modulus 
(G) of 0.25MPa; Mooney-Rivlin material property (δ) of 0.9; 
film magnetic susceptibility (χ) of 2.5; a variety of film 
thicknesses (ε) and dipole strengths (D).

When the magnetic field of the FEM model is compared to 
that of a dipole (equation 2), for elements used to calculate the 
equivalent dipole strength, the average error in the radial and 
axial direction is 3.3% and 1.7% respectively. This is quite 
good considering the different approximations used.

Fig. 5 shows the deformed position of the mid-plane of the 
film based on the membrane model at equilibrium, and Fig. 6
shows the deformed position of the film from the FEM, both 
at various dipole strengths. If the equivalent magnetic diapole 
strength of the FEM model is increased above 0.0059 Am2 the 
FEM model becomes unstable (dynamic) and no static 
equilibrium is attained. 

Fig. 5.  Mid-plane displacement for membrane model

Fig. 6.  FEM displacements for ε = 70 µm for D = (0.00078, 0.00233, 0.00388
and 0.00544) Am2

V. COMPARISON AND CONCLUSION

Two comparisons are made below. Fig. 7 has a comparison 
of the mid-plane deformation for a variety of dipole strengths. 
It is seen that the deformations for the two methods are very 
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similar, validating the FEM methods. Fig. 8 has a comparison 
of the mid-plane displacement at the center of the disk for a 
variety of dipole strengths. The two models agree well for the 
stable equilibria. We have also plotted unstable equilibria 
predicted by the membrane model (z0>0.15); the dynamic 
FEM model does not find these solutions because the 
membrane snaps onto the dipole; see reference [5] for more 
detail on the membrane instability.

Fig. 7.  Comparison of the mid-plane deformation for the continuum model 
(Mem) and FEM at  = 70 m for a range of dipole strengths D.

Comparisons of the mid-plane displacement at the center of 
the film were also made for varying film thickness for a 
variety of small dipole strengths, see Fig. 9. It is seen that as 
the thickness of the film in the FEM decreases it approaches 
the membrane model as expected. 

Fig. 8.  Comparison of the z-displacement at the center of the film for the two 
methods at various dipole strengths D. 

Fig.9.  Comparison of the z-displacement at the center of the film for the two 
methods for small dipole strengths.

The good agreement of the results from the FEM and 
membrane models provides some validation of the FEM 
model. Based on this validation we have more confidence to 
apply the FEM model to obtain solutions to a broad array of 
p r o b l e m s  i n c l u d i n g  l o w-symmetry and dynamic 
magnetoelastic problems for which exact solutions are 
unattainable.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. 
Department of Energy by Lawrence Livermore National 
Laboratory under contract DE-AC52-07NA27344. LLNL-
CONF-412042

REFERENCES

[1] Hughes, T. J. R, The Finite Element Method: Linear Static and Dynamic 
Finite Element Analysis, Dover Publications, 1987.

[2] R. Rieben, D. White, “Verification of high-order mixed finite element 
solution of transient magnetic diffusion problems,” IEEE Trans. Magn., 
v. 42, n. 1, pp 25-39, 2006.

[3] R. Rieben, D. White, B. Wallin, J. Solberg, “An arbitrary Lagrangian-
Eulerian discretization of MHD on 3D unstructured grids,” J. Comp. 
Phys. 226, pp. 534-570, 2007.

[4] Barham M, Steigmann D J, McElfresh M and Rudd R E,  “Finite 
deformation of a pressurized magnetoelastic membrane in a stationary 
dipole field” Acta Mech. vol. 191, pp. 1-19, 2007.

[5] Barham M, Steigmann D J, McElfresh M and Rudd R E, “Limit-point 
instability if a magnetoelastic membrane in a stationary magnetic field” 
Smart Mater. Struct. vol. 17, pp. 6-11 2008

Manuscript received March 6, 2009 Corresponding author: M. Barham (e-
mail: barham2@llnl.gov;).


